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Abstract The determination of the weighted L p norms of the real orthogonal poly-
nomials of hypergeometric type {yn(x)} is not only a very important problem per se
in the theory of special functions, but also because of their recent entropic charac-
terization and applications in quantum chemistry, quantum physics and information
theory. Indeed, they essentially describe the pth-order Rényi and Tsallis entropies of
the numerous quantum systems whose wavefunctions are controlled by these poly-
nomials. Moreover, for different values of p, up to a constant factor, these norms
characterize various fundamental and experimentally accessible quantities of many-
electron systems. As well, the L p norms have been used to develop and interpret all
energy components in the density-functional theory of the ground-state of atoms and
molecules. The asymptotics of these quantities when n → ∞ and p > 0 have been
recently calculated for Hermite polynomials, although not yet for Laguerre and Jacobi
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polynomials. Here, we determine the asymptotics (p → ∞, n fixed) of the weighted
L p norms for general orthogonal polynomials in terms of the weight function and the
coefficients of the second-order hypergeometric differential equation that they satisfy,
and we apply it to the three classical families of real orthogonal polynomials. More-
over we analyse and discuss the monotonicity of this asymptotics, and we carry out a
detailed numerical study of it.

Keywords Orthogonal polynomials · Quantum chemistry · Quantum physics ·
Information theory · Hermite polynomials · Laguerre polynomials · Jacobi
polynomials · L p-norms asymptotics

1 Introduction

Let {yn(x)} denote a sequence of real polynomials orthogonal with respect to the
weight function ω(x) on the interval �. The probability density of the polynomial
yn(x), to be called Rakhmanov‘s density heretoforth because he found [1] that it
governs the asymptotic (n → ∞) behaviour of the ratio yn+1/yn for general ω > 0
almost everywhere on the finite interval �, is given by

ρn(x) = 1

d2
n
ω(x)y2

n (x),

where d2
n is the normalization constant. Physically, ρn(x) describes the probability

density of the ground and excited states of the physical systems whose non-relativistic
quantum-mechanical wavefunctions are controlled by the polynomials yn(x) (see e.g.,
[2,3]).

This density distribution can be characterized under certain conditions either by
means of the ordinary moments μk := ∫

�
xkρn(x)dx [4,5] with integer order k, or

via the frequency moments (also called probability moments or entropic moments) of
integer order k, νk := ∫

�
[ρn(x)]k dx [5–8]. The latter quantities are the integer-order

instances of the weighted L p norms of the orthonormal polynomials yn(x), which are
set by

‖ρn‖p ≡
⎛

⎝
∫

�

[ρn(x)]p dx

⎞

⎠

1
p

= 1

d2
n

⎛

⎝
∫

�

[
ω(x)y2

n (x)
]p

dx

⎞

⎠

1
p

; p > 0. (1)

They are closely related to not only the pth-order frequency moments Wp[ρn] =
‖ρn‖p

p, but also to various information-theoretic measures such as the Rényi entropies
[9] Rp[ρn], the Tsallis entropies [10], Tp[ρn] and the Rényi spreading lengths [11]
L R

p [ρn], which are defined as P

Rp[ρn] = 1

1 − p
ln Wp[ρn]; p > 0, p �= 1,
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Tp[ρn] = 1

p − 1

(
1 − Wp[ρn]) ; p > 0, p �= 1,

L R
p [ρn] = exp

(
Rp[ρn]) = ‖ρn‖− p

p−1
p .

respectively. These quantities, which include the Shannon information entropy
S [ρn] = − ∫

�
ρn ln ρndx in the limiting case q → 1, grasp different aspects of

the distribution of the probability density ρn(x) along the interval � when the order
p is varying (see the recent review [12]).

From a chemical point of view these quantities do not only allow us to grasp various
aspects of the internal disorder of many-electron systems (which are closely connected
with the rich three-dimensional geometry of their electron distributions), but also they
describe up to some constant factors numerous fundamental and experimentally acces-
sible chemical quantities (average electron density, electron-nucleus attraction energy,
kinetic and exchange energies, among many others; see e.g., [12–14]) and tightly bound
other macroscopic properties of these systems [15–17]. Moreover, it most important
that the L p norms have been used to develop and interpret all energy components
in the density-functional theory of the ground-state of atoms and molecules [18–20].
In addition, they have been used as uncertainty measures in chemical and physical
quantum systems [21]. For further details, see the recent survey [12].

The analytical determination of these norms has been a long standing problem not
only in quantum chemistry but also in the theory of special functions and extremal
polynomials itself since the times of Bernstein and Steklov (see e.g., [22–24]) and in the
theory of trigonometric series [8]. Recently, they have been calculated for polynomials
yn(x) with arbitrary degree n by means of the combinatorics-based Bell polynomials
in the Hermite [25], Laguerre [26] and Jacobi [27] cases; see also [28]. However, this
methodology is computationally very demanding and analytically inefficient for high
and very high values of n. Recently, extending some previous works of Aptekarev et
al. [29] when p ∈ [0, 4

3

]
, the strong asymptotics (n → ∞ and p > 0) of the weighted

L p norms has been fully determined for Hermite polynomials Hn(x) [30] orthogonal

with respect to the weight function ωH = e−x2
. This result has been achieved by

means of the Tulyakov method [31] whose initial starting point is the recurrence
relation of the polynomials; so, opposite to the matrix Riemann–Hilbert method [28]
which begins with the orthogonality weight. We should immediately underline that
both weak* [32] and strong [29] asymptotics of Laguerre and Jacobi polynomials are
still lacking in spite of some serious efforts [23,33,34].

For completeness, it is worth mentioning here that the pth-power of the (non-
weighted) L p norms defined as Nn(p;ω) := ∫

�
[yn(x)]p ω(x) dx has also been

considered and its asymptotics has been determined for n → ∞ in some special cases
[29,33,35]. Indeed, the leading term of the asymptotic behavior of the norms Nn(p;ω)

for the polynomials orthogonal with respect to a weight function satisfying either the
Bernstein condition or the weaker Szego condition has been calculated, obtaining more
refined results for Jacobi polynomials [29,33]. As well, the asymptotic behavior of the
Hermite norms Nn(p;ω

1/2
H ) when n → ∞ has been found and applied by Larsson-

Cohn [35] to some extremal problems on Wiener chaos [35]. In the discrete case, the
only results found in the literature are the ones of Meixner [36] and Charlier [37]
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polynomials, which were recently used to determine the asymptotics of generalised
derangements.

The aim of this work is the calculation of the complementary asymptotics (i.e., for
p → ∞ and n fixed) of the weighted L p norms of general hypergeometric orthogonal
polynomials (i.e., with respect to a general weight function on the real line) and
their applications to the systems of orthogonal polynomials of Hermite, Laguerre and
Jacobi types. We use the Laplace’s asymptotic method, which is much more efficient
for this problem than the ones based on linearisation [38–48], combinatorial [49] and
integro-differential [50] techniques.

The structure of the paper is the following. In Sect. 2 we determine the asymptotics
of the pth-power of the weigthed L p norms of general orthogonal polynomials for
large values of p by means of the Laplace’s method [51] together with the second-
order hypergeometric differential equation of the polynomials [52]. Then, in Sect. 3,
we apply the previous result to Hermite, Laguerre and Jacobi polynomials. In Sect. 4
we analyse the monotonicity behaviour of the asymptotics of the L p norms of these
hypergeometric polynomials. Later, in Sect. 5, we make a numerical study of the
weighted L p norms in some special cases. Finally some conclusions and references
are given.

2 Weighted L p-norms of general orthogonal polynomials: asymptotics
( p → ∞)

In this section we determine the asymptotics (p → ∞) of weighted L p norms of the
system of polynomials {yn(x)} orthogonal with respect to the weight function ω(x)

on the interval (a, b) of the real line, not necessarily finite. According to Eq. (1) we
have that the pth-power of the weighted L p norm of the polynomials yn(x) is given
by

b∫

a

[
ω(x)y2

n (x)
]p

dx =
b∫

a

ep
[
ln ω(x)+ln y2

n (x)
]

dx . (2)

To estimate the asymptotic behaviour of this quantity when p → ∞, we use the
Laplace’s method [51], designed to derive an asymptotic expansion of the functional
integral

F[ f ] =
b∫

a

ep f (x) dx, p > 0, f (x) real.

Let us suppose that this integral converges absolutely for large enough p. For large
p, the dominant contribution of the integrand to the integral occurs around the point
x0 ∈ [a, b] where f (x) reaches its maximum value, so that the contribution of the
integrand to the integral is exponentially damped away from it.

Assume that f ∈ C3(a, b) and has only one simple maximum at x = x0 in (a, b).
Then f ′(x0) = 0, f ′′(x0) < 0 and
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F[ f ] = ep f (x0)

[√
2π

−p f ′′(x0)
+ O(p−1)

]

, p → ∞. (3)

Moreover, if the function f (x) has two or more maxima the dominat contribu-
tion to the functional F[ f ] comes from the absolute maximum x0 of f (x), mainly
because the contribution from a local maximum at x1 is suppressed by the factor
exp ( f (x1) − f (x0)). Then, the asymptotics of the weighted L p norm of yn(x) is
basically controlled by the absolute maximum of the function

f (x) = ln ω(x) + ln y2
n (x),

whose value x0 = x0(n) is the solution of the equation

y′
n(x0)

yn(x0)
= −1

2

ω′(x0)

ω(x0)
. (4)

So, from Eqs. (2)–(4) one has that

b∫

a

[
ω(x)y2

n (x)
]p

dx =
[
ω(x0)y2

n (x0)
]p
[√

2π

−p f ′′(x0)
+O(p−1)

]

, p → ∞, (5)

where

f ′′(x0) = ω′′(x0)

ω(x0)
− 3

2

[
ω′(x0)

ω(x0)

]2

+ 2y′′
n (x0)

yn(x0)
.

Furthermore, since the polynomial yn(x) satisfies [52] the hypergeometric differential
equation

σ(x)y′′
n (x) + τ(x)y′

n(x) + λn yn(x) = 0 (6)

(where σ and τ are polynomials of degree 2 and 1, at most, respectively, and λn is a
scalar), one has that

f ′′(x0) = ω′′(x0)

ω(x0)
− 3

2

[
ω′(x0)

ω(x0)

]2

− 2λn

σ(x0)
+ τ(x0)

σ (x0)

ω′(x0)

ω(x0)
, (7)

where use of the Laplace’s condition (4) has been used.

3 Applications

In this section, we apply the general results (5) and (7) obtained in the previous
section to determine the pth-power of the L p norms of the three canonical systems
of real orthogonal hypergeometric polynomials [52]; that is, the Hermite, Laguerre
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Table 1 Data on classical orthogonal polynomials

Hermite Hn(x) Laguerre

L(α)
n (x) (α > −1)

Jacobi P(α,β)
n (x)

(α > −1, β > −1)

(a, b) (−∞, +∞) (0, +∞) (−1, +1)

ω(x) e−x2
xαe−x (1 − x)α(1 + x)β

σ (x) 1 x 1 − x2

τ(x) −2x 1 + α − x −(α + β + 2)x + β − α

λn 2n n n(n + α + β + 1)

d2
n 2nn!√π

�(n+α+1)
n!

2α+β+1�(n+α+1)�(n+β+1)
n!(2n+α+β+1)�(n+α+β+1)

and Jacobi polynomials. These polynomials are known to satisfy the orthogonality
condition

b∫

a

yn(x)ym(x)ω(x) dx = d2
n δmn,

and the second-order differential equation (6), whose coefficients σ(x), τ(x), λn ,
weight function ω(x), orthogonality interval (a, b), and normalization constant d2

n are
given in Table 1.

3.1 Hermite polynomials Hn(x)

These polynomials are orthogonal with respect to the weight function ωH (x) = e−x2

on the whole real line and satisfy the differential equation (6) with the coefficients
(see Table 1).

σ(x) = 1, τ (x) = −2x, λn = 2n.

According to (4), the absolute maximum x0 = x0(n) is given by one solution of the
equation

x0 Hn(x0) = 2nHn−1(x0).

Moreover, following Eq. (7) one has that the second derivative of fH (x) = ln ωH (x)+
ln (Hn(x))2 evaluated at the absolute maximum x0 has the value

f ′′
H (x0) = 2x2

0 − 4n − 2.

Then, according to Eq. (5) we obtain that
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+∞∫

−∞

[
ωH (x)H2

n (x)
]p

dx = 2

+∞∫

0

[
ωH (x)H2

n (x)
]p

dx

= 2
[
ωH (x0)H2

n (x0)
]p
[√

2π

p(4n − 2x2
0 + 2)

+ O(p−1)

]

. (8)

For the particular cases n = 0, 1 and 2 we have that x0 = 0, 1 and
√

5
2 , respectively,

so that the L p norm of the corresponding polynomials has the asymptotical values

√
π

p
, 22p+1e−p

[√
π

2p
+O(p−1)

]

and 26p+1e− 5
2 p

[√
2π

5p
+ O(p−1)

]

. (9)

Remark that the first of these three asymptotical values is the exact value of the
functional. To calculate it we take into account that x0 = 0, so that one has to apply
the Laplace’s method to the whole integration interval (−∞,+∞) in (8).

3.2 Laguerre polynomials L(α)
n (x)

These polynomials are orthogonal with respect to the weight function ωL(x) = xαe−x

on the interval [0,+∞) and satisfy the differential equation (6) with the coefficients

σ(x) = x, τ (x) = 1 + α − x, λn = n

Here, the absolute maximum x0 = x0(n) is according to Eq. (4) one solution of the
equation

(
α

x0
− 1

)

L(α)
n (x0) = 2L(α+1)

n−1 (x0). (10)

Moreover, according to Eq. (7), one has that the second derivative of the function

fL(x) = ln ωL(x) + ln
(

L(α)
n (x)

)2
evaluated at x0 has the value

f ′′
L (x0) = α2

2x2
0

− 2n + α + 1

x0
+ 1

2
.

Then, following Eq. (5) we obtain that the pth-power of the weighted L p norm of

Laguerre polynomials L(α)
n (x) has the following asymptotic behavior
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+∞∫

0

[

ωL(x)
[

L(α)
n (x)

]2
]p

dx =
[

ωL(x0)
[

L(α)
n (x0)

]2
]p

×

⎡

⎢
⎢
⎢
⎣

√√
√
√
√

2π

p

(

− α2

2x2
0

+ 2n+α+1
x0

− 1
2

) + O(p−1)

⎤

⎥
⎥
⎥
⎦

, (11)

for p → +∞ and α > 0. For the Laguerre polynomials with α > 0 and degrees
n = 0 and 1, one finds from Eq. (10) the absolute maximum values x0 = α

and 1
2

(
2α + 3 − √

8α + 9
)
, respectively. Taking these particular cases into Eq. (11),

we obtain that the leading term of the asymptotics (p → ∞) of the weighted L p

norms of the corresponding polynomials L(α)
0 (x) = 1 and L(α)

1 (x) = α + 1 − x is
given by

+∞∫

0

[

ωL(x)
[

L(α)
0 (x)

]2
]p

dx = α pαe−pα

[√
2πα

p
+ O(p−1)

]

and

+∞∫

0

[

ωL(x)
[

L(α)
1 (x)

]2
]p

dx =
[
xα

0 e−x0(1+α − x0)
2
]p
[√

2π

−p f ′′
L (x0)

+O(p−1)

]

,

respectively, with

f ′′
L (x0) = 3

√
8α + 9 − 8α − 9

(√
8α + 9 − 2α − 3

)2 .

Moreover, in the subcase α = 1 one finds that x0 = 1
2

(
5 − √

17
)

and f ′′(x0) =
− 1

16

(
51 + 11

√
17
)

, so that we obtain the following asymptotics

+∞∫

0

[

ωL(x)
[

L(1)
1 (x)

]2
]p

dx =
[

1

2

(
31 − 7

√
17
)

e
− 1

2

(
5−√

17
)]p

×
⎡

⎢
⎣

√√
√
√

32π

p
(

51 + 11
√

17
) + O(p−1)

⎤

⎥
⎦ .
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3.3 Jacobi polynomials P(α,β)
n (x)

These polynomials are orthogonal with respect to the weight function ωJ (x) = (1 −
x)α(1+ x)β on the interval [−1,+1], and satisfy the differential equation (6) with the
coefficients

σ(x) = 1 − x2, τ (x) = β − α − (α + β + 2)x, λn = n(n + α + β + 1)

In this case the absolute maximum x0 turns out to be, according to Eq. (4), one solution
of the equation

P(α+1,β+1)
n−1 (x0)

P(α,β)
n (x0)

= − 1

α + β + n + 1

( −α

1 − x0
+ β

1 + x0

)

. (12)

Moreover, the use of Eq. (7) allows us to find the following value for the second

derivative of the function f J (x) = ln ωJ (x) + ln
(

P(α,β)
n

)2
evaluated at x0:

f ′′
J (x0) = −

(

α + α2

2

)
1

(1 − x0)2 −
(

β + β2

2

)
1

(1 + x0)2

− αβ

1 − x2
0

− 2n(n + α + β + 1)

1 − x2
0

+β − α − (α + β + 2)x0

1 − x2
0

[
β

1 + x0
− α

1 − x0

]

. (13)

Now, from Eq. (5) we find that the pth-power of the weighted L p norm of the Jacobi

polynomials P(α,β)
n (x) has the following asymptotic behavior:

+1∫

−1

[

ωJ (x)
[

P(α,β)
n (x)

]2
]p

dx

=
[

ωJ (x0)
[

P(α,β)
n (x0)

]2
]p
[√

2π

−p f ′′
J (x0)

+ O(p−1)

]

(14)

for p → ∞ and α, β > 0. In the particular case where n = 0, α > 0 and β > 0 we
can find from Eq. (12) and (13) that

x0 = β − α

α + β
and f ′′

J (x0) = − (α + β)3

4αβ
,
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respectively. Thus, from Eq. (14) with these values of x0 and f ′′
J (x0) we obtain the

value

+1∫

−1

[

ωJ (x)
(

P(α,β)
0 (x)

)2
]p

dx

= 2p(α+β)

(
α

α + β

)αp (
β

α + β

)βp
[√

8παβ

p(α + β)3 + O(p−1)

]

for the leading term of the asymptotics (p → ∞) of P(α,β)
0 (x) = 1. Finally, let us

consider another particular case: when n = 1 and α = β > 0. Then, P(α,α)
1 (x) =

(1 + α)x and the associated Rakhmanov density

ρ J
n (x) = ωJ (x)

[
P(α,α)

1

]2 = (1 + α)2(1 − x2)αx2

is symmetric with respect to the origin. Then, the corresponding pth-power of the
weighted L p norm can be expressed as

+1∫

−1

{

ωJ (x)
[

P(α,α)
1 (x)

]2
}p

dx = 2

+1∫

0

{

ωJ (x)
[

P(α,α)
1 (x)

]2
}p

dx .

The application of the Laplace’s method to this functional on the interval (0,+1)

together with the values

x0 =
√

1

1 + α
and f ′′

J (x0) = −4(1 + α)2

α

for the absolute maximum and the second derivative of the corresponding function
f J (x) allows us to find from Eq. (5) the expression

+1∫

−1

{

ωJ (x)
[

P(α,α)
1 (x)

]2
}p

dx = 2(1 + α)p
[

α

1 + α

]αp [√
πα

2(1 + α)2 p
+ O(p−1)

]

for the leading term of the asymptotics (p → ∞) of the weighted L p norm of the

Jacobi polynomial P(α,α)
1 (x).

4 Monotonicity of the asymptotic behaviour

In this section we analyse the monotonicity of the asymptotics (p → +∞) for the
Hermite polynomials Hn(x). Then, we describe the difficulties to obtain the same
property in the Laguerre and Jacobi cases.
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We start from the general expression (5), whose asymptotic behaviour is given by

G(p) =
[
ω(x0)y2

n (x0)
]p
√

2π

−p f ′′(x0)
.

This function G(p) is the product of the function
[
ω(x0)y2

n (x0)
]p

(which has, as a

function of p, an exponential behavior in practice) and the power p− 1
2 . For large

values of p, the exponential function gives the increasing or decreasing behaviour of
the asymptotics: G(p) increases with p if ω(x0)y2

n (x0) > 1 and G(p) decreases when
p increases if ω(x0)y2

n (x0) ≤ 1. Thus, notice that the monotonicity of the asymptotic
behaviour for large values of p is controlled by the value of the function in the absolute
maximum x0.

Let us first consider the case of the orthogonal (Hn(x)) and orthonormal (H̃n(x))
Hermite polynomials. Notice that H̃n(x) = Hn(x)/

√
d2

n . The orthonormal Hermite
polynomials satisfy Eq. 18.14.9 of [53], namely

ωH (x)H̃2
n (x) ≤ 1√

π
< 1.

Thus, in particular we have that ωH (x0)H̃2
n (x0) < 1, so the pth-power of the L p norm

of these polynomials decreases as p increases for large values of p.
On the other hand, the orthogonal Hermite polynomials, with the standard normal-

ization constant d2
n given in Table 1, satisfy that [54]

ωH (x0)H2(x0) > Kn,

for n ≥ 6 with

Kn =

⎧
⎪⎨

⎪⎩

27

61(2n)
1
6

2n
√

4n−2(n!)2√
8n2−8n+3( n

2 !)2 if n is even,

27

61(2n)
1
6

√
16n2−16n+6n!(n−1)!
√

2n−1
(

(n−1)
2 !

)2 if n is odd.

Note that Kn reaches its minimum at n = 6, with value K6 � 15209 > 1. Then

ωH (x0)H2
n (x0) > 1, n ≥ 6.

In fact this condition is also true for 1 ≤ n ≤ 5. So finally we have that the pth-power
of the L p norm of these polynomials increases with p for large values of p. Moreover,
for n = 0, ωH (x0)H2

0 (x0) = 1; so we have a decreasing behaviour in this case, as
given by Eq. (9).

Let us now consider the Laguerre case. Then, the standard orthogonal L(α)
n (x)

and the orthornormal polynomials are related by L̃(α)
n (x) = L(α)

n (x)/
√

d2
n . Regarding

upper and lower bounds, we have not found in the literature results for these polyno-
mials so simple and powerful as those for Hermite polynomials. However, notice that
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d2
n > 1 for Laguerre polynomials with α > 0. This implies that

ωL(x0)
(

L(α)
n (x0)

)2
> ωL(x0)

(
L(α)

n (x0)
)2

d2
n

= ωL(x0)
(

L̃(α)
n (x0)

)2
. (15)

Thus, if ωL(x0)
(

L(α)
n (x0)

)2
< 1 ⇒ ωL(x0)

(
L̃(α)

n (x0)
)2

< 1. Then, if the pth-power

of the L p norm of the standard orthogonal polynomials decreases as p increases for
large values of p, the pth-power of the L p norm of the orthonormal polynomials has
the same behaviour.

For Jacobi polynomials, we do not have results like those for Hermite polynomials,
neither their normalization constant is always greater or lower than one. Then, the
monotonicity of the asymptotic behaviour remains open for each specific case.

5 Numerical study

In this section we study numerically the behaviour of the asymptotics given in Sect. 3
for the Hermite, Laguerre and Jacobi families of orthogonal polynomials. This is
done in each case for the standard orthogonal and orthonormal polynomials. In all the
following figures, we represent the numerically calculated exact value of the corre-
sponding pth-power of the L p norms ‖ρ‖p

p of these polynomials (squared dot), its
corresponding asymptotic behaviour γp (solid line), as well as the absolute difference
(circled dot)

θa = |‖ρ‖p
p − γp|,

and the relative difference (times)

θr = |‖ρ‖p
p − γp|

‖ρ‖p
p

,

as a function of p.
Figure 1 shows these values for the orthogonal Hermite polynomial with n = 1,

H1(x). Herein we observe the increasing behaviour of the pth-power of the L p norms
and the asymptotic behaviour, as predicted in Sect. 4. The absolute difference increases
with p indicating that the asymptotic behaviour can be improved with some increasing
terms, while the relative difference goes to zero as expected for a good asymptotic
behaviour.

In Fig. 2 we take into account the orthonormal Hermite polynomial H̃1(x), whose
pth-power of the L p norm is now decreasing, as expected from the results of Sect. 4.
The absolute and relative differences naturally decrease as well.

These behaviours are completely analogous for Hermite polynomials with other
values of the degree n.

Now, let us consider the orthogonal Laguerre polynomial with degree n = 1 and
parameter α = 1, L(1)

1 (x). Figure 3 shows that the pth-power of the L p norms
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Fig. 1 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the Hermite
polynomial H1(x), as a function
of p
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Fig. 2 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the orthonormal
Hermite polynomial H̃1(x), as a
function of p
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Fig. 3 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the Laguerre

polynomial L(1)
1 (x), as a

function of p
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decreases as a function of p. Then, taking into account the result (15) from Sect. 4,
we can conclude that the pth-power of the L p norms of the orthonormal polynomials

L̃(1)
1 (x) also decreases as p is increasing. The absolute and relative differences θa and

θr , also decrease as p is increasing.
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Fig. 4 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the Laguerre

polynomial L(2)
1 (x), as a

function of p
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Fig. 5 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the orthonormal

Laguerre polynomial L̃(2)
1 (x), as

a function of p

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

 0  10  20  30  40  50  60  70  80  90  100

In Figs. 4 and 5 we consider the orthogonal L(2)
1 (x) and orthonormal L̃(2)

1 (x)

Laguerre polynomials, respectively. Now, the pth-power of the L p norm increases
with p in the orthogonal case, but it decreases in the orthonormal case. A brief study

of the corresponding functions x2e−x
(

L(2)
1 (x)

)2
and x2e−x

(
L̃(2)

1 (x)
)2

shows that

their maximum values are greater and lower than 1, respectively. As in the previous
Hermite case, the absolute difference θa increases with p for the orthogonal poly-
nomial, indicating that the asymptotic behaviour can be improved with increasing
terms.

The Jacobi polynomials, with bounded support, can have maximum values greater
or lower than zero, depending on the values of the degree n and the parameters α

and β, regardless if we are considering the orthogonal or the orthonormal version
of the polynomials. Thus, Figs. 6 and 7 show the behaviour of the pth-power of the

L p norm for the polynomials P
( 3

2 , 3
2 )

1 (x) and P̃
( 3

2 , 3
2 )

1 (x), respectively.We notice that it
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Fig. 6 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the Jacobi polynomial

P
( 3

2 , 3
2 )

1 (x), as a function of p
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Fig. 7 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the orthonornal

Jacobi polynomial P̃
( 3

2 , 3
2 )

1 (x),
as a function of p
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is increasing with p in the orthogonal case, but decreasing in the orthonormal case.
According to the reasoning in Sect. 4, this behavior is because

max
x∈[−1,1]

{

(1 − x)
3
2 (1 + x)

3
2

(

P̃
( 3

2 , 3
2 )

1 (x)

)2
}

< 1 <

max
x∈[−1,1]

{

(1 − x)
3
2 (1 + x)

3
2

(

P
( 3

2 , 3
2 )

1 (x)

)2
}

.

Figures 8 and 9 show the same quantities for polynomials P
( 1

2 , 1
2 )

3 (x) and P̃
( 1

2 , 1
2 )

3 (x),
respectively. Now the behaviours are in the opposite direction compared with those of
the previous examples in Figs. 6 and 7. The pth-power of the L p norm is decreasing
for the orthogonal polynomial but increasing for the orthonormal one. The reason,
again, is that
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Fig. 8 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the Jacobi polynomial

P
( 1

2 , 1
2 )

3 (x), as a function of p
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Fig. 9 Exact value of the
pth-power of the L p norms
‖ρ‖p

p (squared dot), its
corresponding asymptotic
behaviour γp (solid line),
absolute difference θa (circled
dot), relative difference θr
(times) for the orthonornal

Jacobi polynomial P̃
( 1

2 , 1
2 )

3 (x),
as a function of p
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max
x∈[−1,1]

{

(1 − x)
1
2 (1 + x)

1
2

(

P
( 1

2 , 1
2 )

3 (x)

)2
}

< 1 <

max
x∈[−1,1]

{

(1 − x)
1
2 (1 + x)

1
2

(

P̃
( 1

2 , 1
2 )

3 (x)

)2
}

.

Then, all the numerical examples considered here agree with the analytical
monotonicity results of Sect. 4. Furthermore, the relative difference θr is always a
decreasing function as p increases. Notice also in all the figures the exponential behav-
ior predicted by the Laplace’s method for the pth-power of the L p norms and their
asymptotics. Please keep in mind the logarithmic scale in the ordinate axis.

6 Conclusions and open problems

Energetic and entropic quantities of the ground and excited states of exactly and quasi-
exactly solvable quantum systems can be often expressed in terms of some weighted L p

norms of the orthogonal polynomials which control the corresponding wavefunctions.
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In this work we have determined the asymptotics of the weighted L p norms of
Hermite, Laguerre and Jacobi polynomials of nth degree when p → ∞ by means of
the Laplace’s method. Moreover we have analyzed its monotonicity, identifying some
new open problems. As well, a numerical study of the asymptotics for all classical
continuous orthogonal polynomials has been performed.

The extension of these results to other continuous hypergeometric orthogonal poly-
nomials of the Askey tableau [55] (even to those which are orthogonal with respect to a
complex contour where the Laplace’s method remains valid under certain conditions)
and to the classical orthogonal polynomials in a discrete variable are open problems
of a great interest in the theory of special functions not only from a fundamental
point of view, but also because of their straightforward applications to various fields,
from some weighted permutation problems to the quantum-mechanical description of
physical systems.

Finally, let us point out that the only results found for the asymptotics of the L p

norms of discrete orthogonal polynomials up until now are the ones for the unweighted
norms of Meixner [36] and Charlier [37] polynomials, which were shown to be very
useful for some extremal problems in generalised derangements [36]. It is clear that
for extensions to other discrete systems we will need the linearisation techniques for
the corresponding polynomials [41,56–59].
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